In this post, we will continue discussing the basics of Solidity language. You can read the previous post here.
1. Mapping
- Mapping is same as Map in Java.
- Declaration syntax:
mapping(keyType => valueType) public myMapping;
- The keyType can be any build-in value type, string, bytes, or any contract.
- The valueType can by any type including another mapping, or an array.
- Mappings are not iterable. You cannot loop in all elements of the mapping, you only can access value if you have a key.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract Mapping {
// Mapping from address to uint
mapping(address => uint) public myMap;
function get(address _addr) public view returns (uint) {
// Mapping always returns a value.
// If the value was never set, it will return the default value.
return myMap[_addr];
}
function set(address _addr, uint _i) public {
// Update the value at this address
myMap[_addr] = _i;
}
function remove(address _addr) public {
// Reset the value to the default value.
delete myMap[_addr];
}
}
contract NestedMapping {
// Nested mapping (mapping from address to another mapping)
mapping(address => mapping(uint => bool)) public nested;
function get(address _addr1, uint _i) public view returns (bool) {
// You can get values from a nested mapping
// even when it is not initialized
return nested[_addr1][_i];
}
function set(
address _addr1,
uint _i,
bool _boo
) public {
nested[_addr1][_i] = _boo;
}
function remove(address _addr1, uint _i) public {
delete nested[_addr1][_i];
}
}
2. Array
- Array can have a compiler-time fixed size or a dynamic size.
- The value types bytes1, bytes2, …, bytes32 hold a sequence of bytes from 1 to up to 32.
- string is dynamically-size UTF-8 encoded string and bytes is dynamically-size bytes array. It is not a value-type.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract Array {
// Several ways to initialize an array
uint[] public arr;
uint[] public arr2 = [1, 2, 3];
// Fixed sized array, all elements initialize to 0
uint[10] public myFixedSizeArr;
function get(uint i) public view returns (uint) {
return arr[i];
}
// Solidity can return the entire array.
// But this function should be avoided for
// arrays that can grow indefinitely in length.
function getArr() public view returns (uint[] memory) {
return arr;
}
function push(uint i) public {
// Append to array
// This will increase the array length by 1.
arr.push(i);
}
function pop() public {
// Remove last element from array
// This will decrease the array length by 1
arr.pop();
}
function getLength() public view returns (uint) {
return arr.length;
}
function remove(uint index) public {
// Delete does not change the array length.
// It resets the value at index to it's default value,
// in this case 0
delete arr[index];
}
function examples() external {
// create array in memory, only fixed size can be created
uint[] memory a = new uint[](5);
}
}
Examples of removing array element
Remove array element by shifting elements from right to left:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract ArrayRemoveByShifting {
// [1, 2, 3] -- remove(1) --> [1, 3, 3] --> [1, 3]
// [1, 2, 3, 4, 5, 6] -- remove(2) --> [1, 2, 4, 5, 6, 6] --> [1, 2, 4, 5, 6]
// [1, 2, 3, 4, 5, 6] -- remove(0) --> [2, 3, 4, 5, 6, 6] --> [2, 3, 4, 5, 6]
// [1] -- remove(0) --> [1] --> []
uint[] public arr;
function remove(uint _index) public {
require(_index < arr.length, "index out of bound");
for (uint i = _index; i < arr.length - 1; i++) {
arr[i] = arr[i + 1];
}
arr.pop();
}
function test() external {
arr = [1, 2, 3, 4, 5];
remove(2);
// [1, 2, 4, 5]
assert(arr[0] == 1);
assert(arr[1] == 2);
assert(arr[2] == 4);
assert(arr[3] == 5);
assert(arr.length == 4);
arr = [1];
remove(0);
// []
assert(arr.length == 0);
}
}
Remove array element by copying last element into to the place to remove:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract ArrayReplaceFromEnd {
uint[] public arr;
// Deleting an element creates a gap in the array.
// One trick to keep the array compact is to
// move the last element into the place to delete.
function remove(uint index) public {
// Move the last element into the place to delete
arr[index] = arr[arr.length - 1];
// Remove the last element
arr.pop();
}
function test() public {
arr = [1, 2, 3, 4];
remove(1);
// [1, 4, 3]
assert(arr.length == 3);
assert(arr[0] == 1);
assert(arr[1] == 4);
assert(arr[2] == 3);
remove(2);
// [1, 4]
assert(arr.length == 2);
assert(arr[0] == 1);
assert(arr[1] == 4);
}
}
3. Enum
- Enum in Solidity is completely same as other programming language.
- It is useful to model choice and keep track of state.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract Enum {
// Enum representing shipping status
enum Status {
Pending,
Shipped,
Accepted,
Rejected,
Canceled
}
// Default value is the first element listed in
// definition of the type, in this case "Pending"
Status public status;
// Returns uint
// Pending - 0
// Shipped - 1
// Accepted - 2
// Rejected - 3
// Canceled - 4
function get() public view returns (Status) {
return status;
}
// Update status by passing uint into input
function set(Status _status) public {
status = _status;
}
// You can update to a specific enum like this
function cancel() public {
status = Status.Canceled;
}
// delete resets the enum to its first value, 0
function reset() public {
delete status;
}
}
4. Struct
- Build-in value type is never enough for developers. We always needs to define new type for modeling objects in real world.
- In Solidity, you can define your own type by creating a struct. If you are familiar with Golang or C, I think it is the same as the struct of those languages.
- Struct can be declared outside of a contract and imported from another contract.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract Todos {
struct Todo {
string text;
bool completed;
}
// An array of 'Todo' structs
Todo[] public todos;
function create(string memory _text) public {
// 3 ways to initialize a struct
// - calling it like a function
todos.push(Todo(_text, false));
// key value mapping
todos.push(Todo({text: _text, completed: false}));
// initialize an empty struct and then update it
Todo memory todo;
todo.text = _text;
// todo.completed initialized to false
todos.push(todo);
}
// Solidity automatically created a getter for 'todos' so
// you don't actually need this function.
function get(uint _index) public view returns (string memory text, bool completed) {
Todo storage todo = todos[_index];
return (todo.text, todo.completed);
}
// update text
function update(uint _index, string memory _text) public {
Todo storage todo = todos[_index];
todo.text = _text;
}
// update completed
function toggleCompleted(uint _index) public {
Todo storage todo = todos[_index];
todo.completed = !todo.completed;
}
}
5. Ether, Wei, Gas
- Ether: it is the currency in the ethereum network. Transaction are paid with Ether
- Wei: it is the smallest unit (1 Ether = 1018 **Wei)
- In a transaction you pay gas spent * gas price amount of Ether
- gas: is a unit of computation, it is the same as oil in real world
- gas spent: is the total amount of gas used in a transaction, it is the same as the total of oil used for your car when you drive from your home to your office.
- gas price: is how much Ether you are willing to pay per gas, it is the same as the price of a liter of oil.
6. Data locations
- Variables are declared as either storage, memory or calldata to explicitly specify the location of the data:
- storage: variable is a state variable (store on blockchain)
- memory: variable is in memory and it exists while a function is being called
- calldata: special data location that contains function arguments
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract DataLocations {
uint[] public arr;
mapping(uint => address) map;
struct MyStruct {
uint foo;
}
mapping(uint => MyStruct) myStructs;
function f() public {
// call _f with state variables
_f(arr, map, myStructs[1]);
// get a struct from a mapping
MyStruct storage myStruct = myStructs[1];
// create a struct in memory
MyStruct memory myMemStruct = MyStruct(0);
}
function _f(
uint[] storage _arr,
mapping(uint => address) storage _map,
MyStruct storage _myStruct
) internal {
// do something with storage variables
}
// You can return memory variables
function g(uint[] memory _arr) public returns (uint[] memory) {
// do something with memory array
}
function h(uint[] calldata _arr) external {
// do something with calldata array
}
}
7. Function
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract Function {
// Functions can return multiple values.
function returnMany()
public
pure
returns (
uint,
bool,
uint
)
{
return (1, true, 2);
}
// Return values can be named.
function named()
public
pure
returns (
uint x,
bool b,
uint y
)
{
return (1, true, 2);
}
// Return values can be assigned to their name.
// In this case the return statement can be omitted.
function assigned()
public
pure
returns (
uint x,
bool b,
uint y
)
{
x = 1;
b = true;
y = 2;
}
// Use destructuring assignment when calling another
// function that returns multiple values.
function destructuringAssignments()
public
pure
returns (
uint,
bool,
uint,
uint,
uint
)
{
(uint i, bool b, uint j) = returnMany();
// Values can be left out.
(uint x, , uint y) = (4, 5, 6);
return (i, b, j, x, y);
}
// Cannot use map for either input or output
// Can use array for input
function arrayInput(uint[] memory _arr) public {}
// Can use array for output
uint[] public arr;
function arrayOutput() public view returns (uint[] memory) {
return arr;
}
}
8. View, Pure function
- View function declares that no state will be changed.
- Pure function declares that no state variable will be changed or read.
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
contract ViewAndPure {
uint public x = 1;
// Promise not to modify the state.
function addToX(uint y) public view returns (uint) {
return x + y;
}
// Promise not to modify or read from the state.
function add(uint i, uint j) public pure returns (uint) {
return i + j;
}
}